Cycle and circle tests of balance in gain graphs: Forbidden minors and their groups
نویسندگان
چکیده
We examine two criteria for balance of a gain graph, one based on binary cycles and one on circles. The graphs for which each criterion is valid depend on the set of allowed gain groups. The binary cycle test is invalid, except for forests, if any possible gain group has an element of odd order. Assuming all groups are allowed, or all abelian groups, or merely the cyclic group of order 3, we characterize, both constructively and by forbidden minors, the graphs for which the circle test is valid. It turns out that these three classes of groups have the same set of forbidden minors. The exact reason for the importance of the ternary cyclic group is not clear.
منابع مشابه
Forbidden minors and subdivisions for toroidal graphs with no K3, 3's
Forbidden minors and subdivisions for toroidal graphs are numerous. In contrast, the toroidal graphs with no K3,3’s have a nice explicit structure and short lists of obstructions. For these graphs, we provide the complete lists of four forbidden minors and eleven forbidden subdivisions.
متن کاملOn the existence of special depth first search trees
The Depth First Search (DFS) algorithm is one of the basic techniques which is used in a very large variety of graph algorithms. Most applications of the DFS involve the construction of a depth-first spanning tree (DFS tree). In this paper, we give a complete characterization of all the graphs in which every spanning tree is a DFS tree. These graphs are called Total −DFS −Graphs. We prove that ...
متن کاملThe obstructions for toroidal graphs with no K3, 3's
We prove a precise characterization of toroidal graphs with no K3,3-subdivisions in terms of forbidden minors and subdivisions. The corresponding lists of four forbidden minors and eleven forbidden subdivisions are shown.
متن کاملPartial tracks, characterizations and recognition of graphs with path-width at most two
Nancy G. Kinnersley and Michael A. Langston has determined [3] the excluded minors for the class of graphs with path-width at most two. Here we give a simpler presentation of their result. This also leads us to a new characterization, and a linear time recognition algorithm for graphs width path-width at most two. 1 History and introduction Based on the seminal work of Seymour and Robertson [4]...
متن کامل3-difference cordial labeling of some cycle related graphs
Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 51 شماره
صفحات -
تاریخ انتشار 2006